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Abstract

The present investigation expands on differences in speech articulation between read

and spontaneous speech tasks in the DoubleTalk corpus. This corpus comprises of

electromagnetic articulography data from multiple participants in a high temporal res-

olution. I analysed speech style differences on the phone level, using a subset of phones,

speech tasks, and research participants. I observed qualitative differences in the articu-

latory space for each phone and each individual between speech styles, and performed a

quantitative analysis on one participant’s data. These observations are discussed in the

context of theories of articulation, statistical identification of articulators, and other

electromagnetic articulography investigations.

Keywords: Articulation, EMA, speech, variation
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Chapter 1

Introduction

Instrumental techniques in phonetics such as electromagnetic articulography (EMA)

allow more fidelity in collecting physiologically real speech data. It also captures ar-

ticulation which may remain undetected in a raw acoustic analysis, and has shed light

on the nature of co-articulation (Harrington, Fletcher, & Roberts, 1995), assimilation

(Ellis & Hardcastle, 2002), and prosodic (Cho, 2006) and dialectal differences in ar-

ticulation (Wieling et al., 2016). The data from instrumental techniques provides us

with concrete information to supplement abstract ideas of human speech production

and perception. It is also useful for speech technology systems like Automatic Speech

Recognition (King et al., 2007), and features of the speech signal which are useful in

synthesising speech.

This investigation expands on findings from Parsons’ investigation into acoustic-to-

articulatory inversion (2015), where she found differences in articulatory trajectories

between read and spontaneously-produced speech. She found that spontaneous speech

was less precise in the articulatory space, and the articulators moved towards their

targets at a slower velocity. This study incorporates the same research participants

from the DoubleTalk corpus (Scobbie et al., 2013), but analyses a subset of phones for

each speaker to investigate differences between speech style for each phone, as well as

providing accompanying quantitative analyses.

This study begins with an overview of instrumental phonetic methods, as well as an

in-depth description of EMA. It then introduces aspects of phonological theory related

to speech planning, coarticulation, and its impact on speech style, including an overview

of critical articulation, a statistical approach. The following section describes my data

collection and analysis, and then presents qualitative and quantitative articulatory
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data. The final section addresses the implication of my findings in relation to previous

data and articulatory theories. It also proposes further areas of research brought about

by this investigation.
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Chapter 2

Background

2.1 Capturing articulation

A trade-off exists in methods of capturing articulation - imaging of the vocal tract and

point-tracking. Methods of imaging include Ultrasound Tongue Imaging (UTI) and

Magnetic Resonance Imaging (MRI). These provide a more faithful image of the vocal

tract, but at a lower temporal resolution. UTI and MRI typically capture images at 30-

120fps1 and 50-100fps respectively (Lawson et al., 2015). UTI has the benefit of both

being relatively inexpensive, easy to set up, and non-invasive (Lawson et al., 2015).

However, images of the tongue are often unclear, and ultrasound is unable to reflect

of the hard tissue of the palate and the teeth - as well as not capturing articulation of

the lips (Gick, Wilson, & Derrick, 2012, p. 160). MRI produces faithful images of the

entire vocal tract except the teeth (Gick et al., 2012, p. 223). However, MRI is highly

expensive and involves participants speaking in confined, unnatural spaces where the

tongue’s resting position is altered.

Point-tracking methods produce representations of the articulators at higher reso-

lutions. One method is to use infrared-emitting diodes such as in the Optotrak system.

These are attached to nine locations on the face and capture movement at 460fps (Gick

et al., 2012, p. 200). However the tongue, an articulator crucial for most speech sounds,

is not measured due to the non-invasive nature of Optotrak. Another method which

offered both high temporal and spatial resolution was x-ray microbeam. This meth-

ods involved placing a string of metal (usually gold or lead-based) spheres along the

mid-sagittal plane of the tongue and firing low levels of concentrated x-rays through

1frames per second
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participants’ heads (Westbury, Turner, & Dembowski, 1994). This system’s apparatus

is large and highly expensive to operate (Gick et al., 2012, p. 201), is no longer in

operation, and is unlikely to pass modern ethics criteria due to the ionising radiation

that participants are exposed to. In addition, data visualisation and quantification is

only available in 2D (Papcun et al., 1992).

2.1.1 Electromagnetic articulography

Since the discontinuation of x-ray microbeam equipment, EMA systems have been used

to construct multiple corpora. EMA involves gluing up to twelve sensor coils to speech

articulators and reference points on a speaker’s head. These sensors are detected by

six transmitter coils which generate alternating magnetic fields. The transmitter coils

produce carrier frequencies of between 7.5-13.5kHz (Geng et al., 2013). Like all other

methods mentioned above to capture articulation, the acoustic signal may also be picked

up with an accompanying microphone. Due to the electromagnetic field in which the

participant is sat, it is necessary to use a piezoelectronic microphone which contains

no moving metal coils. This is due to the electromagnetic interference a conventional

microphone would produce (Geng et al., 2013).

Figure 2.1 shows the typical placement of the sensor coils, as is the case in the

DoubleTalk corpus (Scobbie et al., 2013). Coils for capturing speech articulation are

Upper Lip (UL), Lower Lip (LL), Lower Jaw central (LJ), Tongue Tip (TT), Tongue

Body (TB), and Tongue Dorsum (TD) along the mid-sagittal plane. Due to non-exact

placement and the physiology of every individual as unique, sensor coils are treated

in relative position to each other, and other coils used for reference positions. These

reference coils, indicated with ’ref’ in Figure 2.1, are located behind each ear, on the

upper incisors, and on the bridge of the nose. These coils are important for system

calibration and as a reference point in EMA data analysis.

While older EMA systems could only measure movement in three-dimensional space

(x,y,z) (Perkell et al., 1992), newer systems - such as those used to create the MOCHA

(Wrench, 2000), DoubleTalk, and mngu0 (Steiner, Richmond, Marshall, & Gray, 2012)

corpora - can measure five degrees of freedom (Gick et al., 2012, p. 144). These in-

clude movement in a three-dimensional plane (x,y,z), and two degrees of rotation to

more accurately reflect the motion of the tongue. EMA trades off its high temporal

resolution of 200fps and its five degrees of freedom with the imaging of up to only
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Figure 2.1: Typical EMA sensor coil placement locations. Red = articulators for
measurement, green = reference points
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twelve points. This means high temporal and spatial accuracy, but with a higher level

of visual abstraction than methods like UTI and x-ray microbeam.

2.2 Analysing articulation

Prior to the development of accurate instrumental techniques, articulation was in-

ferred from the acoustic signal, or articulatory theories were developed from models

and images of the vocal tract. This section focuses on how theories of articulation

may account for differences in read versus spontaneously produced speech. These are

based on varying approaches to the phenomenon of coarticulation, and experimental

findings that spontaneous speech is globally different in acoustic (Nakamura, Iwano,

& Furui, 2008) and articulatory (Parsons, 2015) character to read speech. Moreover,

spontaneous speech results in lower reconigtion rates in Automatic Speech Recognition

(ASR) systems (Nakamura et al., 2008).

Coarticulation is described as the overlap of speech articulators in time, where

the configuration of the vocal tract during the production of a phone is influenced by

adjacent phones. In addition, these configurations often undertake similar articulatory

strategies, and may be below the level of acoustic or human perception (Farnetani &

Recasens, 2010).

2.2.1 Context-sensitivity

It has been widely accepted that modifying stress patterns, speech rate, and ideas of

‘attention paid to speech’ (e.g., Coupland, 1980), affect both the acoustic signal (Tuller,

Harris, & Kelso, 1982; Matthies, Perrier, Perkell, & Zandipour, 2001) and therefore

the configuration of the speech articulators. In particular, speech patterns involving

pausing and breathing significantly vary between planned and unplanned utterances

(Grosjean & Collins, 1979). This has implications in read versus spontaneous speech,

where the articulatory goals rely on both temporal constraints, and the degree to which

the utterance has been planned.

Within the literature, researchers disagree about how the articulators behave in

reaching their targets. Targets or goals in this instance are defined as the articula-

tory configuration required to produce and perceive a given phone. Context-sensitive

approaches require movements to be planned according to the following phones in a

sequence, whereas context-insensitive approaches rely on the motor system to average
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out trajectories into articulatory configurations where coarticulation occurs (Gick et al.,

2012, p. 207). There are also hybrid approaches, combining ideas of context-sensitivity.

The Task Dynamics model of Articulatory Phonology (AP/TD) (Browman & Gold-

stein, 1992) is considered a context-insensitive model (Gick et al., 2012, p. 208). Ar-

ticulatory gestures are seen as reliant on ‘constellations’ of articulators (for example,

larynx, tongue tip, velum etc.), where not all articulators are required to produce a

given phone. Because these constriction degrees and locations are goals, temporal con-

straints are considered intrinsic to the model. This means that artiulatory patterns may

overlap over time, but this means that instead of accurately mapping the articulators,

there is still a level of abstraction required to understand the model. Another hybrid

approach, the DIVA model (e.g., Perkell et al., 2000), is a response to AP/TD. Perkell

and other DIVA researchers argue that AP/TD only accounts for speech production,

while there must be consideration for the hearer. Temporal constraints in speech are

also intrinsic to the DIVA model, and speech planning takes into account the phys-

iology of the vocal motor system. For example, rate of speech may lead to ‘inertia’

(Perkell et al., 2000) - actual articulatory trajectories lagging behind planned ones.

This means that the vocal motor system must use ‘feedforward’ articulatory planning

(Perkell, 2012) to produce a configuration perceivable as the target phone to the hearer

(c.f., Liberman & Mattingly, 1985).

Variable configurations due to physiological and temporal constraints have impli-

cations to how articulators behave between speech styles. Read speech, which is more

likely to be carefully produced and pre-planned, should - according to the theories

outlined above - be articulated differently to spontaneous speech.

2.3 Critical Articulation

Once articulatory data from sources like EMA were available to researchers, they could

employ statistical methods of studying patterns of articulation. Studying critical ar-

ticualtors involves identifying which articulator configurations are considered ‘critical’,

‘dependent’ or ‘redundant’ in producing a given phone (Singampalli & Jackson, 2007).

Singampalli and Jackson (2007) developed an algorithm to identify, as well as measure

how strong the influence of, articulators in producing target phones. Their algorithm

was based on both a univariate and bivariate model. The univariate model analysed

1-dimensional correlations between the trajectories of the upper and lower lips, tongue
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tip, body and dorsum, the lower jaw, and the velum. These were the EMA sensor coils

from the MOCHA-TIMIT corpus (Wrench, 2000), the training data for Singampalli

and Jackson’s algorithm. The bivariate model used all of the same articulators, but

two extra degrees of freedom - the x2 and y axes - were taken into account. The identi-

fication of critical and dependent articulations is based on a distance measure between

articulatory coordinates (Jackson & Singampalli, 2009), Kullback-Leibler divergence.

Critical articulator studies have identified articulators which are crucial to the produc-

tion of a range of IPA phone categories and differ slightly between male and female

participants (Jackson & Singampalli, 2009). In addition, they have investigated articu-

lator movement trajectories (Kim, Lee, & Narayanan, 2014), differences in emotion in

speech (Kim, Toutios, Lee, & Narayanan, 2015), and the utility of critical articulation

to ASR acoustic features (Felps, Geng, Berger, Richmond, & Gutierrez-Osuna, 2010).

It will be important to reference critical articulator studies in this investigation.

They provide guidelines into which articulators to pay close attention to during analysis

of the read and spontaneous EMA data.

2.4 EMA studies

EMA studies have uncovered articulatory differences in speech which are difficult or im-

possible to identify in acoustic or auditory analyses. For example, Cho (2006) uncovered

differences in lip trajectories, where articulations at prosodic boundaries displayed less

overlapping and a greater degree of opening. His analysis was supplemented with con-

cepts of gestural overlap from AP/TD theories (Browman & Goldstein, 1992). Isakrous

and colleagues (2011) also found that phrase and word position, from variation in /s/,

was responsible for variation in lower jaw configuration - as well as a trade off in the

movement trajectories of the tongue tip and tongue dorsum. The implications for the

present investigation is that in spontaneous speech, where there is likely to be a greater

level of articulatory overlap, phones are likely to be produced with a smaller degree of

lip-opening.

Along with speech style differences, dialect variation has also been shown to result

in predictably variable articulatory configuration. Wieling and colleagues (2016) no-

ticed that there was a north/south divide in Dutch, where the tongue’s position was

considered more anterior for southern speakers across all of their read data. Moreover,

2becomes z axis in 3D plots
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the critical articulator study discussed in section 2.3 observed differences in articula-

tor configuration for certain IPA phone categories between genders, male and female,

in the MOCHA-TIMIT corpus (Jackson & Singampalli, 2009). These studies show

that differences in speech style, gender, and dialect all have an impact on articulation.

Therefore, investigating differences between different DoubleTalk speech tasks should

result in variation between read and spontaneous exercises.

2.4.1 Parsons study

The motivation of this investigation is based on an epiphenomenal finding in Parsons’

(Parsons, 2015) thesis on acoustic-to-articulatory inversion. Parsons’ study also used

the DoubleTalk corpus and found that, between read and spontaneous speech, there

were visibly different articualtor configurations. An example plot from her study is

shown in Figure 2.2. This plot shows the articulators from a ‘front-on’ perspective,

focusing on the x-axis where the articulators are less variable than on the other axes.

In this investigation, another viewing angle is used. Across all data, including non-

speech pauses, there appeared to be a greater degree of variation in lip and tongue

movement. Parsons observes that the articulators move with greater velocity and in

‘smaller’ gestural movements, while spontaneous speech appeared more imprecise; it

uses a greater area of the articulatory space and with slower gestural velocity (Parsons,

2015). The nature of Parsons’ study did not allow closer investigation, so it is valuable

to undertake a closer investigation of individual phones for each speaker to analyse

the differences between read and spontaneous articualtion. In addition, as Parsons

modelled the entirety of all speech files, variation in articulator movement might be

due to non-speech cues.

2.5 Articulatory phonetics and speech technology

The field of speech technology is only beginning to adopt the current understanding of

human speech production. Even though articulatory data is becoming more abundant

”and may be regarded as ground truth, it is not sufficient to build a model (King et

al., 2007, p.5)”. Acoustic models in systems such as Hidden Markov Model (HMM)

recognisers rely on linear sequences of phones which are based on a phonetic alphabet

(Jurafsky & Martin, 2014). The problem with this approach is that many traces in an

acoustic signal can produce the same phone category in a language, and broad phonetic
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Figure 2.2: Example plot from Parsons (2015). The articulators are all coloured dif-
ferently, and use the same key as the scatterplots in section 4.1. All articulator coils
pictured are located on the midsagittal plane

categories may be configured differently across languages. Acoustic-to-articulatory in-

version (c.f. Papcun et al., 1992; Parsons, 2015) is one approach to inferring underlying

articulatory configuration from the acoustic signal. Articulatory patterns for individual

features and phones are mathematically correlated from aspects of the speech signal us-

ing statistical methods such as HMMs, or by using the hidden layers of neural networks.

By calcualting root mean square error, Parsons (2015) discovered that read speech more

faithfully revealed underlying articulation than spontaneous speech. A closer investi-

gation into individual phones allows a closer investigation into how her neural network

used the acoustic data to map articulator configurations, and the reasons why read

speech is more useful to the inversion process.

2.6 Research questions

Motivated by existing EMA studies, the study of critical articulators, and theories

relating to the effects of coarticulation, my investigation is based around the following

research questions:

• Is there articulatory variation between read and spontaneous speech on the phone

level?
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• How is articulatory variation between phones manifested?
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Chapter 3

Methodology

In order to investigate differences between read and spontaneous speech, I gathered

EMA data from a subset of the DoubleTalk corpus. The entire corpus was not used

so that the duration of read and spontaneous speech for each participant was roughly

equal, and due to time constraints in data pre-processing. Out of the twelve speakers

comprising the DoubleTalk corpus, I used data from six participants due to a range of

text-labelling alignment and sensor coil errors (Parsons, 2015).

3.1 The DoubleTalk corpus

The DoubleTalk corpus (full description - (Scobbie et al., 2013)) was collected at the

Edinburgh Speech Production Facility between 2008-2010. This facility is unique in

that two synchronised Carstens AG500 electromagnetic articulometers are set up so

that speech can be recorded in dialogue. The two machines are placed far enough

apart to cause as little electromagnetic interference as possible to each other, and are

equipped with talkback piezoelectronic microphones (Geng et al., 2013) at a sampling

rate of 32kHz (Parsons, 2015). Every participant had the ten sensor coils shown in

Figure 2.1 glued to their articulators with dental adhesive and coated in latex to prevent

them from becoming de-attached during recording. Ten of the twelve speakers had an

additional ’lower jaw lateral’ sensor placed on the bottom of their chin (Parsons, 2015)

in order to measure the mouth’s degree of opening.

The corpus included speech tasks in both monologue and dialogue. The first task

was a reading of the Comma Gets a Cure (McCullough, Somerville, & Honorof, 2000)

passage modified for the extended lexical sets of Scottish Standard English (Wells,
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Table 3.1: DoubleTalk participants used for analysis. GN = General Northern (anglo-
English), RP = Received Pronunciation, SSE = Scottish Standard English, SSBE =
Standard Southern British English

Speaker Gender Dialect Read tokens Spontaneous tokens

r20cs5 Male GN 496 707
r33cs6 Male SSBE 484 1,008
r34cs6 Female RP 466 493
r35cs5 Male SSE 493 1,055
r35cs6 Male SSBE 490 632
r36cs5 Female SSE 504 876

1982), as well as a word list. Participants were also asked to perform a spontaneous

monologue drawing on an anecdote from their own life. The interactive tasks in dialogue

involved spot the difference and map task games, as well as a recall task where the other

member of a dyad was asked to retell their interlocutor’s anecdote (Scobbie et al., 2013).

The varied and large amount of data in dyads is currently unique to EMA corpora,

and is especially advantageous to this research project. In the following sections, I

describe the subset of data I analysed, the method of data processing I undertook, and

the motivations for my use of this data.

3.1.1 Participants

From the remaining speakers where there were no errorful .TextGrid and .pos sensor

files, there remained a good balance in gender and dialect distribution. Speaker in-

formation and number of tokens gathered from each is displayed in Table 3.1. All of

the DoubleTalk speakers apart from one pair are reported as naive non-linguists who

did not know each other prior to recording (Scobbie et al., 2013). One speaker in my

subset (r20cs5) is one of the linguist, non-naive participants. All participants did not

report speech or hearing deficits.

3.1.2 Materials

My subset of DoubleTalk comprises of one individual, read task - the Comma Gets

a Cure passage, and one interactive, spontaneous task - spot the difference. For all

six participants, the total read data duration was 18m18s with an average duration

of 3m03s between participants. The total duration for spontaneous data was 45m06s,

with an average duration of 7m31s between participants. The amount of tokens per

task, per speaker is displayed in Table 3.1.
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Figure 3.1: Vowels used for articulatory speech style analysis within the vowel space.
An abstract representation based on the IPA

To analyse differences between speech styles, I measured four vowels and three

plosives for each speaker. I attempted to have a wide range in place of articulation

for plosives by choosing /p,b/, /t,d/, and /k,g/. This is also an attempt to analyse

the variation in particular articulators such as the upper and lower lips for /p,b/, the

tongue tip for /t,d/ and the tongue dorsum for /k,g/. As for vowels, I measured /i/,

/a,æ/, /O/, and /u/. These vowels were chosen in order to parsimoniously represent

tongue position for the entire English vowel space (e.g., Lindblom, 1986), and is shown

pictorially in Figure 3.1. /a/ and /æ/ are measured as the same variable due to the

ARPAbet representation for both phones being the same, /AE/.

3.2 Data pre-processing

The TextGrid files accompanying DoubleTalk only label each sound file with a phrasal

transcription (Scobbie et al., 2013). It was therefore necessary to generate a phone-

level transcription for my subset of DoubleTalk data. This was achieved by running

the FAVE-aligner (Rosenfelder, Fruehwald, Evanini, & Yuan, 2011), which uses a Hid-

den Markov Model method of forced alignment. The software requires a specifically-

formatted .txt file and accompanying .wav file, and returns a .TextGrid file with a

word-level and phone-level transcription. The phones are labelled with ARPAbet

transcription from entries in the Carnegie Mellon University dictionary. Within the

FAVE software suite, a Praat (Boersma & Weenink, 2005) script, Convert To FAVE-
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align Input.praat, is used to produce the .txt file readable by the FAVE-aligner. One

technical issue encountered with the FAVE-aligner is that, though words and speech

errors - such as false starts - without a dictionary entry may be added manually to a

transcription, silences cannot. Silences already encoded between phrases in the original

transcriptions are therefore present, but silences between words and within phrases are

not. Overall, the transcriptions produced by the FAVE-aligner were accurate across

read and spontaneous files.

In order to plot the transcribed phones from the EMA .pos data, I needed to align

the frame representations from the .pos file with the TextGrid timetamps. First, this

involved manipulating the 3D binary arrays in which the articulatory data is encoded.

This was achieved by creating numpy arrays which contain each 5ms frame, 10-12 EMA

sensor coil channels, and five coordinates which map the position and rotation of each

coil. The code necessary to create these 3D matrices is included in my posplot.py script

in Appendix A. One issue with the 3D matrices is that the EMA channel for each sensor

varies between speakers. I consulted Parsons (2015, p. 48) to match the appropriate

sensor with each articulator for each participant.

Next, it was necessary to extract the desired phones for analysis from the TextGrid

files, and convert the second value of their start and end-points into the frame number

within each .pos file. In the framewav.py script (Appendix B), I used the PraatIO1

module to extract all instances of a given phone with their start and endpoint times-

tamps. I then converted their second values into frame numbers within their .pos files.

This was achieved by calculating Equations 3.1 and 3.2

fx =
ssecs
Tsecs

· F (3.1)

fy =
esecs
Tsecs

· F (3.2)

Where fx = frame ID for a given token’s startpoint, fy = frame ID for a given token’s

endpoint, ssecs = startpoint in seconds, esecs = endpoint in seconds, Tsecs = total

filelength in seconds, and F = total filelength in frames.

1https://github.com/timmahrt/praatIO
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3.3 Data analysis

Once I obtained all of the frame IDs for the desired phone classes, I plotted each phone

for each speaker in 3D scatter plots. These plots are in a similar format to Parsons

(2015), the motivation for this investigation, but are viewed at from a different angle.

This is because there is little movement on the x-axis due to the physiology of the oral

cavity, and the fact that all sensors are located midsagittally.

Movement along the x axis is lateral, left-to-right, movement. The y axis depicts

front-back movement, and the z axis depicts longitudinal, top-to-bottom, movement.

The axes in each plot are equal in scaling, and movement is measured in millimetres.

As displayed and discussed in Parsons (2015), I qualitatively analysed differences

between articulatory movements in read and spontaneous speech. I expand on this

work by discussing differences between phones. I then quantitavely analysed the distri-

bution of articulator positions at phone midpoints for one speaker. I chose to analyse

participant r35cs6 for concision, and also because his data was free from NaN2 errors

in the .pos files.

I performed paired t-tests to consider whether articulator distributions significantly

differ between speech styles. Where there is a significant difference between the distri-

bution of articulator configuration, it can be assumed that speech style has an affect

on speech production.

3.4 Reproducibility

As of August 2017, DoubleTalk materials are available online at http://espf.ppls.ed.ac.uk/.

The FAVE software suite is also available via GitHub (https://github.com/JoFrhwld/FAVE).

The scripts I wrote to process and plot DoubleTalk data are in Appendices A and B.

As all of the materials are freely available, there is a scope for other researchers to

plot a different selection of phones and speech tasks for speakers within the DoubleTalk

corpus. Moreover, my data has contributed phone transcriptions to a subsection of the

corpus and will be presently included online.

2’not a number’
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3.5 Predictions

From Parsons’ findings (2015), studies of critical articulation (Singampalli & Jackson,

2007; Kim et al., 2014) and previous work on dialectal (Wieling et al., 2016) and

prosodic (Cho, 2006) variation, I expect there to be clear differences in the articulation

of read and spontaneous speech. An interesting line of enquiry is connecting differences

in speech style and critical articulation. I predict that many articulators will be both

qualitatively and statistically variable in the production of each phone for each speech

style, especially with the articulators considered critical. The articulators considered

critical for the phones I investigated are located in Table 3.2.

Table 3.2: Articulators and direction of movement considered critical (Jackson &
Singampalli, 2009) for the phones I analysed. -Y and -Z refer to the axis of articu-
lator movement

Phone ‘Critical’ for articulation

/p,b/ UL-Y, LL-Y
/t,d/ TT-Y, LJ-Y(/t/, female only)
/k,g/ TD-Y
/i/ TT-Z
/a,æ/ LL-Y
/O/ TB-Y, TB-Z, TD-Z
/u/ none
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Chapter 4

Results

The main finding of this investigation is that there is more supporting evidence for

articulatory differences between read and spontaneous speech. First, I present the 3D

representations of articulatory space for each speaker and make qualitative comparisons

on the distribution of the data. Then, I present the results of my t-tests on each artic-

ulator for each phone for speaker r35cs6. I compare these findings with my predictions

and previous critical articulator studies. I finally present articulator trajectory data

from Parsons (2015).

4.1 Raw articulatory data

Figures 4.1-4.6 show scatter plots of the articulatory trajectories for the seven phones

investigated for each participant. The articulators are colour-coded and are included in

each plot’s figure legend. The nose is included as a point of reference in all plots. Like

Parsons’ comparison between read and spontaneous data (2015), there appears to be a

greater degree of front-back (y-axis) and longitudonal (z-axis) articulatory movement,

particularly in the tongue for spontaneous speech. However, Parsons’ interpretation

that the lips are closer together in spontaneous speech is only apparent in certain

speakers and certain phones. A clear example of this is in speaker r36cs5 in Figure 4.6.

For all phones, particularly /O/, there is less space on the longitudonal plane between

the UL and LL sensor traces. Parsons’ other observation that the articulators are

more ‘precise’ in read speech is especially shown in low-frequency tokens, particularly

/u/. Clear examples are shown when comparing the tongue sensors between read

and spontaneous /u/ for r20cs5, r33cs6, and r34cs6, and r35cs6. There is much more
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variation on the z-axis for all of these speakers’ realisations of /u/. Fewer tokens may

have constrained the preceding and following phone environments which would, in turn,

constrain articulatory configuration futher.

Along the y-axis, the variation in front-back tongue movement is demonstrated by

the overlap in tongue articulator trajectories. This is particularly clear in participants

r20cs5, r33cs6, and r34cs6. A greater degree of longitudonal variation is most clear

in participants r33cs6, r34cs6, r35cs5, and r36cs5. As in Parsons (2015), longitudonal

variation is clearly manifested in the tongue tip, but there are also clear differences in

the lower lip, lower jaw, and other tongue articulators.

These plots also show that there is interspeaker variation in the configuration of the

articulators across all phones, particularly the tongue. These differences are manifested

in the tongue tip and seem to remain constant across both speech styles, but vary

between participants. The tongue tip is generally lower than the tongue body and

tongue dorsum for participants r20cs5, r35cs5, and r36cs5. For participants r34cs6 and

r35cs6, the tongue tip remains level with the other tongue sensors, and for participant

r33cs6, the tongue tip is generally raised above the other tongue sensors.

An additional finding between read and spontaneous speech is from lateral move-

ment for participants r34cs6 and r36cs5. In their spontaneous data, there are a few

articulator trajectories which appear to be away from the midsagittal plane on the

x-axis. This may infer articulations where the participant’s entire head shifts to the

left or right during the production of spontaneous speech, or that the .pos file has

misinterpreted positioning coordiantes (Richmond, p.c.).
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Figure 4.1: Articulator trajectories for speaker r20cs5 - General Northern, male
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Figure 4.2: Articulator trajectories for speaker r33cs6 - Standard Southern British
English, male
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Figure 4.3: Articulator trajectories for speaker r34cs6 - Received Pronunciation, female
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Figure 4.4: Articulator trajectories for speaker r35cs5 - Scottish Standard English, male
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Figure 4.5: Articulator trajectories for speaker r35cs6 - Standard Southern British
English, male
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Figure 4.6: Articulator trajectories for speaker r36cs5 - Scottish Standard English,
female
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4.2 Variance

To analyse whether the articulators behaved significantly differently for a given phone,

I performed paired t-tests on sensor position distributions at phone midpoints. Tables

4.1-4.7 display p-values for each phone’s distribution of position for all occurring read

and spontaneous tokens. Where there is a significant value, it may be inferred that

there is a significantly different distribution of the given articulator’s position between

the two speech styles. I compare these findings with Jackson and Singampalli’s (2009)

critical articulator study. I also present boxplots of an articulator which significantly

differs for each phone to be considered representative of the data. These plots are more

abstract, but one-dimensional and more clear representations articulators in Figure 4.5.

Table 4.1: t-test p-values for the distribution of articulator position on the y and z axis
for /p,b/

Sensor Y axis Z axis

LJ 0.101 0.958
UL 0.233 0.188
LL 0.017* 0.860
TT 0.001* 0.016*
TB 0.019* 0.359
TD 0.085 0.352

Table 4.2: t-test p-values for the distribution of articulator position on the y and z axis
for /t,d/

Sensor Y axis Z axis

LJ 0.287 0.000*
UL 0.013* 0.000*
LL 0.002* 0.000*
TT 0.000* 0.000*
TB 0.051 0.000*
TD 0.305 0.005*

Table 4.3: t-test p-values for the distribution of articulator position on the y and z axis
for /k,g/

Sensor Y axis Z axis

LJ 0.813 0.057
UL 0.607 0.000*
LL 0.120 0.054
TT 0.000* 0.013*
TB 0.301 0.111
TD 0.656 0.154
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Table 4.4: t-test p-values for the distribution of articulator position on the y and z axis
for /i/

Sensor Y axis Z axis

LJ 0.819 0.361
UL 0.673 0.003*
LL 0.189 0.093
TT 0.235 0.018*
TB 0.723 0.267
TD 0.812 0.886

Table 4.5: t-test p-values for the distribution of articulator position on the y and z axis
for /æ,a/

Sensor Y axis Z axis

LJ 0.003* 0.405
UL 0.453 0.000*
LL 0.000* 0.207
TT 0.118 0.008*
TB 0.001* 0.251
TD 0.000* 0.321

Table 4.6: t-test p-values for the distribution of articulator position on the y and z axis
for /O/

Sensor Y axis Z axis

LJ 0.009* 0.898
UL 0.101 0.287
LL 0.002* 0.075
TT 0.278 0.861
TB 0.006* 0.635
TD 0.000* 0.877

Table 4.7: t-test p-values for the distribution of articulator position on the y and z axis
for /u/

Sensor Y axis Z axis

LJ 0.119 0.101
UL 0.526 0.000*
LL 0.367 0.118
TT 0.766 0.787
TB 0.678 0.114
TD 0.418 0.207

For /p,b/ (Table 4.2, there were significantly different distributions for LL-y, TT-y,

TT-z, and TB-y. This matches the identification of LL-y as a critical articulator, but

not UL-y , whose distributions did not significantly differ between read and spontaneous

speech. Figure 4.7 shows the difference in LL-y distributions across all /p,b/ tokens for

each speech style. This figure shows that the lower lips are more forward, or protruded
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Figure 4.7: Midpoint distribution of LL-y for /p,b/ (Left - read speech, right - sponta-
neous speech)

in realisations of /p/ and /b/.

For /t,d/, there were significantly different distributions for LJ-z, UL-y, UL-z, LL-y,

LL-z, TT-y, TT-z, TB-z, and TD-z. This means that all longitudonal distributions sig-

nificantly differed between read and spontaneous tokens of /t/ and /d/. This compares

with TT-y and LJ-y being considered critical for articulating /t,d/. Figure 4.8 shows

the difference in TT-y distributions across all /t,d/ tokens for each speech style. The

tongue tip is shown to be more retracted in this plot. There were many more tokens

for /t,d/ than any other phone, so there may be a connection between amount of data

and the number of articulator distributions which are significant.

For /k,g/, there were significantly different longitudonal distributions for UL-z, TT-

y, and TT-z. This compares with TD-y as a critical articulator. Figure 4.9 shows the

difference in UL-z distributions across all /k,g/ tokens for each speech style. The upper

lip height varies much less, and is lower in spontaneous speech.

For /i/, there were significantly different distributions for UL-z and TT-z. TT-z is

also considered a critical articulator for /i/. Figure 4.10 shows the difference in tongue

tip height distributions across all /i/ tokens for each speech style. The tongue tip is

generally lower in spontaneous speech. This infers that the tongue tip is not as close

to reaching its articulatory target, close to the alveolar ridge (Browman & Goldstein,

1992).
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Figure 4.8: Midpoint distribution of TT-y for /t,d/ (Left - read speech, right - sponta-
neous speech)

Figure 4.9: Midpoint distribution of UL-z for /k,g/ (Left - read speech, right - sponta-
neous speech)
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Figure 4.10: Midpoint distribution of TT-z for /t,d/ (Left - read speech, right - spon-
taneous speech)

For /æ/, there were significantly different distributions for LL-y, TT-y, TD-y, and

TD-z. LL-y is also considered a critical articulator for /æ/. Figure 4.11 shows that the

tongue back is significantly higher in spontaneous speech. As there are many outliers,

the tongue dorsum’s position may also be considered more variable in spontaneous

speech.

For /O/, there were significantly different distributions for LL-y, TB-y, and TD-y.

TB-y is also considered a critical articulator for /O/. Figure 4.12 shows that the tongue

dorsum is generally further forward for spontaneous speech.

For /u/, there was a significantly different distribution of ULz. Jackson and Singam-

palli (2009) found no individual articulator to be critical. Figure 4.13 shows that the

upper lip is less variable and much lower in spontaneous speech. The lack of variation

in spontaneous data may be the result of having a low number of tokens (22) in the

data.
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Figure 4.11: Midpoint distribution of TD-z for /æ/ (Left - read speech, right - sponta-
neous speech)

Figure 4.12: Midpoint distribution of TD-y for /O/ (Left - read speech, right - sponta-
neous speech)
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Figure 4.13: Midpoint distribution of UL-y for /u/ (Left - read speech, right - sponta-
neous speech)

4.3 Velocity

Parsons found that average articulatory speed was 20.452mm/s in read speech, and

17.544mm/s in spontaneous speech for all participants and across all of the production

data (Parsons, 2015).

4.4 Summary

The data presented provides additional evidence that the articulation of read and spon-

taneous speech data is fundamentally different. Spontaneous speech is more articulato-

rily variable across all articulators and phones, and articulator speed is slower (Parsons,

2015). However, certain articulators differ more predictably for a given phone, shown by

paired t-tests. A summary of articulators which significantly differed on two movement

planes is shown in Table 4.8.

I also pointed out interspeaker differences on a qualitative level, including x-axis

movement in spontaneous speech and global articulator configuration. These areas, as

well as expanding a quantitative analysis to all six participants, require further inves-

tigation. In addition, critical articulators are not the only articulators to significantly

differ by speech style. This means that variation does not only occur in articulators

which are crucial to the perception of a phone.
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Table 4.8: Summary of results - sensor coils which differed significantly for each phone
Phone Significantly variable Significantly variable

front-back (y-axis) position longitudonal (z-axis position)

/p,b/ LL, TT, TB TT
/t,d/ UL, LL LJ, UL, LL, TT, TB, TD
/k,g/ TT UL, TT
/i/ UL, TT
/æ/ LL, TT, TD TD
/O/ LL, TB, TD
/u/ UL
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Chapter 5

Discussion

This investigation has returned a vast quantity of information on the differences between

read and spontaneous speech in terms of articulation. It has confirmed Parsons’ (2015)

observations, and answered the research question, of articulatory variation between

speech style across seven vowels and consonants.

5.1 Implication in vocal motor theories

The AP/TD approach, where the production of phones is linked to constellations of

articulatory gestures (Browman & Goldstein, 1992), does not sufficiently account for all

observations made on this EMA data. For example, the gestures which are considered

contrastive for /p/ and /b/ in AP/TD are limited to the degree of closure in the

lips (Browman & Goldstein, 1992, p. 158). However, the distribution of front-back

movement of the tongue, longitudonal movement of the tongue tip, and lip protrusion,

significantly differ between read and spontaneous data. In addition, the tongue tip’s

distribution appears to be variable in both y and z-axis movement across most of the

consonant and vowel phones studied. Vowels are specified in AP/TD by the constriction

of the tongue tip and tongue body. However, evidence both from the current data and

critical articulation (Jackson & Singampalli, 2009) show that the tongue configuration

is not responsible for differences in /u/ production, nor is it critical for articulating /u/

or /æ/ in English EMA data.

Further, Browman and Goldstein (1992) suggest that when there are temporal and

spatial constraints, phonetic gestures will shrink, but retain their specification of artic-

ulatory components. Temporal and spatial constraints align with spontaneous speech
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in comparison with read speech which is non-planned, has increased levels of coarticu-

lation (Nakamura et al., 2008) and is more error-prone (Pouplier, 2007). The present

data do not align with this aspect of AP/TD. For every phone analysed, there has

been at least one articulator in each direction of spatital movement that differed in

its positional distribution during production. As for the temporal factor, these articu-

latory differences occur between speech styles which substantially differ in articulator

velocity (Parsons, 2015), where the articulators move on average 2.91mm/s faster in

read speech. The observation that spontaneous speech utilises a larger area of the

articulatory space, but has slower-moving articulators, seems counter-intuitive. There

appears to be less gestural overlap in read speech, where articulator distributions are

qualitatively more ‘precise’ (Parsons, 2015). The shortcomings that AP/TD has in

explaining these data may be due to its focus on speech production, and not speech

planning and the hearer’s intended perception.

5.1.1 Incorporating speech planning

The DIVA model (Perkell et al., 2000; Tourville & Guenther, 2011) takes into account

the physiological constraints of the ‘biomechanical’ vocal motor system, the psycho-

logical constraints of time in speech planning, and the sensory linkage (e.g. Munhall,

Gribble, Sacco, & Ward, 1996) in human speech perception. The ‘internal model’ is

the cognitive control unit for speech within the DIVA framework. The internal model

contains information about the constraints of the speech articulators, including tem-

poral properties, and the current state of the muscles used in speech production. This

means that feedforward information is always available to a speaker during spontaneous

speech (Perkell, 2012). In comparison, read speech should also have acoustic feedback

and additional speech planning at its disposal. In other words, additional strategies of

reaching an acoustic goal region for a given phone (Perkell et al., 2000) are possible in

read speech, as well as being heavily dependent on the current configuration of the ar-

ticulators. Qualitatively, the 3D scatter plots seem to follow this analysis. The regions

for both speech styles in the production of /t,d/, where there is the highest number of

tokens for any phone amongst all participants, are highly variable. Perkell suggests the

reasons for this are that, contrary to AP/TD, the goal regions of phones are grounded

in neurophysiology (Perkell, 2012) rather than specific locations and specifications of

individual articulators.
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In terms of differences between read and spontaneous speech, theories incorporating

speech perception and the constraints of the vocal motor system more adequately ac-

count for the variation between a given phone, articulator, or DoubleTalk participant.

There is a different type of information available in speech production during the read

passages through acoustic feedback and speech planning.

5.1.2 Naturalness of laboratory speech

As an aside, there is debate concerning the fidelity of speech collected under laboratory

conditions, no matter the considered spontaneity of the speech task (Scobbie, Stuart-

Smith, Warner, Warren, & Hay, 2012). It is impossible for participants in EMA data

collection to be left completely unmonitored by researchers. Observer effects (c.f.,

Labov, 1972) were mitigated as far as possible by collecting DoubleTalk data in dyads

after familiarisation with the lab environment (Scobbie et al., 2013). The comparisons

made between reading the Comma Gets a Cure passage, and spontaneous responses to

a previously-unseen spot the difference task were considered the most disparate tasks

in terms of speech style during the composition of this investigation. For a corpus to

reflect natural speech for use in speech technology, this seems sufficient in the current

state of these systems. However, for psycholinguistic and sociolinguistic studies, the

perceived naturalness of these laboratory tasks might not be sufficient (Scobbie et al.,

2012; King et al., 2007).

5.2 Relationship with Critical Articulation

The relationship between speech style articulator configuration and critical articulation

does not seem straightforward. The general trend in the present data is that articula-

tors considered critical to articulate a given phone are not the articulators which vary

in configuration between speech styles. Out of the ten articulators considered critical

for the phones analysed in this investigation (Jackson & Singampalli, 2009), only four

also significantly differed between speech styles, and 22 additional articulators’ move-

ments were identified as differentiating read and spontaneous speech. Because certain

articulators are crucial for the perception of a phone category, they may not differ in

specification between speech styles so that the perception of the phone remains the

same.

Critical articulators rely on statistical correlations between an articulator and a
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phone category (Kim et al., 2014), for example specified in the IPA framework. Between

speech styles, and in speech variation more generally, different articulators are more

sensitive to this varaition. This was shown by significant differences in articulator

movements, most commonly in the tongue tip in all of the consonant phones, /i/ and

/æ/, meaning that these articulators predictably differ between style.

One aspect of physiologically-real speech that critical articulator studies miss is

aspects of coarticulation, crucial to insights into speech style and rate variation. The

phonological categories to which critical articulators are assigned are abstract entities,

and their ordering is assumed to be linear (Kim et al., 2014). This approach is more

reliable for mathematically modelling speech (Felps et al., 2010), and more consistent

with AP/TD (Jackson & Singampalli, 2009), but does not faithfully reflect speech style

differences or the human vocal motor system.

5.3 Practical applications

Incorporating variable data, such as the current findings, into articulatory speech syn-

thesis and recognition is challenging but necessary to answer current research prob-

lems. These problems include implementing more natural transitions between prosodic

boundaries (Farrús, Lai, & Moore, 2016), and recognising natural speech with its dis-

fluent and error-prone nature. By closely investigating differences between individual

phones, the features and their weighting used in acoustic modelling for speech synthe-

sis and ASR can become more faithful to both speech style and speech production in

general, and hopefully reduce error rates in these systems. There has so far been mixed

success in using articulatory data for acoustic features and landmarks, and ambitious

systems using real-time speech kinematics (King et al., 2007)

In terms of acoustic-to-articulatory inversion, having greater insight into how artic-

ulatory patterning varies allows better learning of the relationship between articulation

and the acoustic signal. A better understanding of the speech articulators allows better

parameter tuning of HMMs or NNs for inversion (Papcun et al., 1992). Felps and col-

leagues (2010) have already compiled lists of articulators which are to be given higher

feature weights in Mel Frequency Cepstral Coefficients used in TTS and ASR. Here,

critical articulators were used for inversion. Further investigation into speech style

would help fine tune these weights.
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5.4 Further work and concluding remarks

There is scope to greatly expand the findings of the present investigation. Key areas to

gain insight would include collecting more phones for analysis, quantitatively analysing

individual phones and articulators for the other five participants, and finding other

ways of presenting this complex data. Pinpointing individual articulator trajectory

start and endpoints, as well as taking measurements of velocity for individual sensors

and phones. Wieling and colleagues measured normalised and averaged articulator

trajectories in their investigation on Dutch dialectal differences (2016). They plot-

ted average trajectories of individual articulators producing individual phones which,

in turn, overlaid the entire distribution of articulator movement. This more abstract

representation may more clearly reflect differences between speech style, and can be

normalised across many participants. Alternative measurements for articulator trajec-

tories are also possible. Articulator speed for individual phones may be calculated for

.pos files from the equation in Parsons (2015, p. 21). Another method, utilising Ar-

ticulate Assistant Advanced (Wrench, 2007) software, involves calculating ‘tangential

velocity’. This metric measures the height of an articulator, the tongue tip in previous

investigations (Purse, Turk, & Fruehwald, 2016), relative to local minima - assumed

to be a resting point of an articulator - along the time axis. This metric could be

incorporated to degree of protrusion of the lip articulators, tongue frontness, among

others.

It is feasible to couple critical articualtor studies with investigations into speech

style and planning. This would answer questions raised by this investigation about

the relationship between articulatory variation and critical articualtion. Similar recent

studies have linked critical articulators to ‘emotional goals’ (Kim et al., 2015) for use in

speech technology. It is hoped that a critical articualtor investigation into speech style

could identify similar markers in speech kinematics to identify and synthesise natural

speech more faithfully.

Additional interesting areas of investigation may include analysing speech errors

within the DoubleTalk data. Studying speech errors and acquisition has uncovered

countless phonetic and articulatory phenomena invisible to speech perception and

acoustic data (Pouplier, 2007). Therefore, studying errors will allow more rigorous

analysis of the DIVA model (Perkell, 2012) which seemed to best explain read and

spontaneous differences in the present data. Due to the nature of phrase-level tran-
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scriptions, this type of investigation would rely on a time-consuming process of using

the FAVE-align toolkit. However, it would be worthwhile to expand this investigation

across all DoubleTalk files - for as many of the participants and ARPAbet phones as

is possible without errorful data. Combining and normalising measurements across

participants will allow a more concrete analysis of variation in articulatory movements,

and the patterns observed in this study may become more clear.

5.4.1 Conclusion

The scope of this investigation has been mostly exploratory, but has confirmed clear

quantitative and qualitative differences in the articulation of read passages and a spon-

taneous speech task. There is a tangible need for further investigation incorporating

more speakers, speech tasks, phones, and combinatory approaches - all of which are

possible with DoubleTalk data.
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Appendix A

posplot.py

import numpy as np

import sys

# ! r35cs5sponUW . png i s c u r r e n t l y miss ing

fname=’ r35cs5comma . pos ’

data = np . f r o m f i l e ( fname , dtype=np . f l o a t 3 2 ) . reshape (−1 , 12 , 7)

# fname2=’ r 3 5 c s 5 s t d 2 . pos ’

# data2 = np . f r o m f i l e ( fname2 , dtype=np . f l o a t 3 2 ) . reshape (−1, 12 , 7)

k1 = data [ 1 7 2 0 : 1 7 2 6 , : , : ]

k2 = data [ 2 6 8 2 : 2 6 8 8 , : , : ]

k3 = data [ 2 8 3 6 : 2 8 5 0 , : , : ]

k4 = data [ 3 1 9 4 : 3 2 0 4 , : , : ]

k5 = data [ 3 9 4 6 : 3 9 5 8 , : , : ]

k data = np . concatenate ( ( k1 , k2 , k3 , k4 , k5 ) , a x i s =0)

print data . shape

print k data . shape

# SELECTION of [ frame , EMA a r t i c u l a t o r , c o o r d i n a t e ]

# Lower Jaw

l j x d a t a = k data [ : , 6 , 0 ]
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l j y d a t a = k data [ : , 6 , 1 ]

l j z d a t a = k data [ : , 6 , 2 ]

# Upper Lip

ulxdata = k data [ : , 3 , 0 ]

u lydata = k data [ : , 3 , 1 ]

u l zdata = k data [ : , 3 , 2 ]

# Lower Lip

l l x d a t a = k data [ : , 4 , 0 ]

l l y d a t a = k data [ : , 4 , 1 ]

l l z d a t a = k data [ : , 4 , 2 ]

# Tongue t i p

t txdata = k data [ : , 9 , 0 ]

t tydata = k data [ : , 9 , 1 ]

t t zdata = k data [ : , 9 , 2 ]

# Tongue body

tbxdata = k data [ : , 8 , 0 ]

tbydata = k data [ : , 8 , 1 ]

tbzdata = k data [ : , 8 , 2 ]

# Tongue dorsum

tdxdata = k data [ : , 7 , 0 ]

tdydata = k data [ : , 7 , 1 ]

tdzdata = k data [ : , 7 , 2 ]

# Nose

nexdata = k data [ : , 2 , 0 ]

neydata = k data [ : , 2 , 1 ]

nezdata = k data [ : , 2 , 2 ]

from m p l t o o l k i t s . mplot3d import Axes3D

import matp lo t l i b . pyplot as p l t

import matp lo t l i b . markers

f i g = p l t . f i g u r e ( ) # I n i t i a l i s e

f i g . s u p t i t l e ( ’ ’ )
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ax = f i g . add subplot (111 , p r o j e c t i o n=’ 3d ’ )

# l a y e r s and f o r m a t t i n g o f p l o t

ax . s c a t t e r ( ttxdata , ttydata , ttzdata , c o l o r=’ k ’ , marker=’ o ’ ) # T t i p

ax . s c a t t e r ( tbxdata , tbydata , tbzdata , c o l o r=’ g ’ , marker=’ o ’ ) # T body

ax . s c a t t e r ( tdxdata , tdydata , tdzdata , c o l o r=’ c ’ , marker=’ o ’ ) # T dorsum

ax . s c a t t e r ( ulxdata , ulydata , ulzdata , c o l o r=’ r ’ , marker=’ o ’ ) # U l i p

ax . s c a t t e r ( l l xdata , l l ydata , l l z d a t a , c o l o r=’ y ’ , marker=’ o ’ ) # L l i p

ax . s c a t t e r ( l jxdata , l j ydata , l j zda ta , c o l o r=’m’ , marker=’ o ’ ) # L jaw

ax . s c a t t e r ( nezdata , neydata , nezdata , c o l o r=’b ’ , marker=’ o ’ ) # Nose ( r e f )

ax . s e t x l a b e l ( ’X a x i s movement (mm) ’ ) # Axis l a b e l s ( l ims )

ax . s e t y l a b e l ( ’Y a x i s movement (mm) ’ )

ax . s e t z l a b e l ( ’Z a x i s movement (mm) ’ )

ax . v i e w i n i t ( e l e v =28,azim=−24) # Plot v i e w p o i n t ( i f not d e f a u l t )

ax . s e t z l i m (−45 ,25)

p l t . xl im (−35 , 35)

p l t . yl im (−15 ,55)

# p l t . z l im (−45 ,25)

p l t . show ( )
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Appendix B

framewav.py

import praa t i o

from os . path import j o i n

from praa t i o import t g i o

import numpy as np

# Open d e s i r e d Textgr id , f i n d t i e r names

tg = t g i o . openTextgrid ( ”r35cs5comma . TextGrid” )

print tg . t ierNameList

#

# # Get a l l i n s t a n c e s o f a phone (N)

# # T i e r d i c t i s a lways ” speech − phone” from FAVE

# k l i s t = t g . t i e r D i c t [” speech − phone ” ] . f i n d (”N”)

# p r i n t k l i s t

# p r i n t l e n ( k l i s t )

### PLOTTING SECTION ###

# A l l timestamps f o r one phone

tegd = t g i o . openTextgrid ( ”r35cs5comma . TextGrid” )

t i e r = tegd . t i e r D i c t [ ” s i l e n c e s − phone” ]

posname =’ r35cs5comma . pos ’

posdata = np . f r o m f i l e ( posname , dtype=np . f l o a t 3 2 ) . reshape (−1 , 12 , 7)
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l en frame = posdata . shape [ 0 ] # e n t i r e f i l e l e n g t h in frames

lenwav = tegd . maxTimestamp # e n t i r e f i l e l e n g t h in seconds

counter = 0

for s ta r t , stop , l a b e l in t i e r . e n t r y L i s t :

# counter += 1 # put i n s i d e i f l oop f o r order o f K’ s on ly

s t a r t = s t a r t / lenwav

stop = stop / lenwav

newstart = lenframe ∗ s t a r t

newstop = lenframe ∗ stop

i f l a b e l == ”TH” or l a b e l == ”DH” :

counter += 1

print ( ”k%d = data [%d:%d , : , : ] ” % ( counter , newstart , newstop ) )

# p r i n t s the c o r r e c t format f o r p l o t t i n g
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